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The steady vibrations of a rigid stamp of circular planform adhering to the SUP 

face of a viscoelastic half-space subjected to a harmonic axial force are consi- 
dered. There are no forces outside the region of contact. 

The system of dual integral equations constructed by using the Hankel trans- 
form is reduced to a system of singular integral equations regularized according 
to Vekua [ 11. An approximate solution, valid for small vibrations frequencies, 

is found. Oscillatory behavior of the stresses is proved. Abramov @] detected a 
similar fact in the plane case. 

The static problem for an elastic medium has been examined by a number 

of authors p - 61. None of the listed papers detected the oscillatory behavior 
of the stresses at the edge of the stamp. 

1. The complex amplitudes of the displacements of a viscoelastic medium in the 
presence of axial symmetry satisfy the system of equations 

A* = h [ I- [ A (x) e-%L?T] , p* = p [I - f M (z) e-‘w~] 
0 0 

Here p is the density of the medium, o is the vibrations frequency, h, and p+ are 

the complex moduli. 
Let us assume that the medium occupies the half-space z < 0. By using the Hankel 

transform, we obtain the amplitudes of the displacements in the following form from 

(1.1): 

u, = f [pep’_4 (w, s) - 0 (.seqz - pep*) sB (co, s)] Jo (rs) ds 
0 

(1.2) 

m 

u, = - s s [epZA (co, s) + 0 (sePr - qeqZ) B (co, s)] J, (rs) ds 
0 

p = (9 - k12)%, q = (~2 - k22)?“, 0 = (kaa - kla)-l 

j&Z = po2 
A* + 2P* ’ 

,+E, Rek,>O, Rek,>O 
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Here A (0, s) and B (0, S) are unknown functions and p and q are branches of the 
roots which satisfy the conditions R 
obtained from (1.2) as 

e p > 0, Re q > 0. The stress amplitudes are 

1 Y 
To2 = 

s 
[xePZA - 0 (qseQz - xepz) sB] J,, (rs) ds (1.3) 

0 
m 

-;-rrz = - 
s 

s[pePZA + O(pseP'- xeqZ) B]J,(rs)ds 

(x = s2 - k,h 2) 

The boundary conditions on the surface z = 0 

~=f(r), ur=O for r<R; (T, =T,,=O for r>R 

should be used to determine A and B . Letting z tend to 0, we obtain a system of 
dual equations from (1.2) and (1.3) 

00 

s [ pA - 0 (S - p) sB] Jo (F-S) ds = f (r) (1.4) 
0 

r<R 
m 

s s [A + 0 (s - q) B] J, (rs) ds = 0 
0 

m 

s [ xA - 0 (qs - x) sB] Jo (rs) ds = 0 
0 

(1.5) 

02 

s s IpA + 8 (ps - x) B] J, (rs) ds = 0 
0 

2. Analogously to the method developed in [7], let us assume 

xA--@(qs-x)sB =&,(t)cos(ts)dt (2.1) 
0 

pA+O(ps-x)B = - fcp,(t)sin(fs)dl 
0 

The relationships (2.1) are a linear system of equations in A and B. The functions 

% (t) and % (t) are assumed bounded and continuously differentiable in the half- 
interval [O, R). Substituting (2.1) into (1.3) and using the formulas for differentiation 
of the Bessel functions, we obtain that at s = () 

1 c =_L d 
XL ~ &‘W[[ rJ, (r’s) cos (ts) ds 1 dt 

-Tz,, = --.&,;~ 1 

2P* 
Jo (rs) sin (ts) ds] dt 

0 0 
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From the properties of the Weber-Schafheitlin integrals [8] as well as the properties 
of ‘pr (t) and ‘pa (t) there results that CT, = Z, = 0 for r > R. The relationships 

hold under the stamp. Eliminating A and B from (1.4) and (2.1). we obtain the sys- 

tem m R 

ss [giicpi (0 cos (2s) + og12cp2 (r) sin (ts)l Jo (r.s) ah = Pf (4 (2.3) 
0 0 
03R 

ss [ag2,cpl(t)cos(ts) + g,,cp,(t)sin(ts)l J,(rs)dtds = 0 
0 0 

fWs 
g11h k27 4 = 20 7 g22(k,, k,, s) = w 

g,,(k,, k,, s) = g,,(& k,, s) = - 7sa'(;;--x) 

a= P* 
h* j-&L, ’ P= 1, + P* 

1, + 2P* 
, r = $ , k = k,, D = pqs2 - x2 \ 

i 

An analysis of the behavior of gij at infinity shows that the estimate 1 1 - gij 1 < 
c (0) se2 is valid for 1 s 1 > 1 k I , where c (0) = 0. Extracting the unity and using 
the representations [9] =, 2 

Jo(z) = $ 1 cos(zsinO)dO, J,(z) = -$ niz sin (2 sin 0) sin B&l 
0 0 

we reduce the system (2. 3) to 
n/2 

S G(rsinO)dO=Pf(r)-ai $?Y!$T$ = g (r) 

0 

n!2 R R 

s 
' H( 

’ 
r sin0) r sinW3 = a 

' tcpl(t)dt 

s 
---a 

s tpJ o 
ql(t)dt = h(r) 

0 

(2.4) 

R R 

G(r)=q,(r)-$$ K,,(t,r)rpl(t)dt--$ 1 K12(t,r)cp2(t)dt 
0 0 

R R 

H(r)=q,(r)-_s ~~~(t,r)91(t)dt-_( K22(tTr)cp2(t)dt 
0 0 

K,, =f(l - g,,)cos(ts)cos(rs)ds, K,, =[(I -gg,,)sin(ts)cos(rs)ds 
0 0 

K2, =[(I - g2J cos( ts) sin( rs)ds, 
0 

K,, =!(I -g,,)siu(ts)sin(rs)ds 

The Kij (t, r) are evidently continuous functions. 
Let us assume that the shape of the stamp is given by a fourth power polynomial in r. 

If ‘pl and ‘p2 are considered known, then each of the equations in the system (2.4) can 
be considered formally as a Schlomilch equation with a given right side continuously 
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differentiable in the half-interval 10, R). It can be shown that the unique solution of 
the Schlomilch equation with such a right side continuous in [0, R) is given by the 

formula 
G(r) 11[9(0)+r’iig~(rsili8)dH] = (2.5) 

Substituting g (rj and h (r) successively into (2.5) and changing the order of integration 

with respect to t and 8, we obtain 
R 

(2.6) 

where b (r) is the inversion of f (r) according to (2.5). The integrals are understood in 
the principal value sense. Let us note that (p2 (0) = 0, K,, and K,, are even and K,, 

and ,K,, are odd in r. Continuing cpl (t) evenly to the left and ‘pz (t) oddly in a con- 
tinuous way, we obtain a singular system with Cauchy kernel from (2.6) 

cpl(r) + G f s dt - GJR Kll(t, r) cpl(t)dt - 
-R 

Ii 
u ’ - 
n s 

K12 (t, r) vz (t) dt = Pb 

-R 

(2.V 

. . 
1 ’ 

-T s K2, (4 r) w2 (t) dt = 0 
-R 

3. Let o tend to zero. Then (1.2) and (1.3) go over into the known representation 

of the solution in terms of the biharmonic Love function. Because lim Kij = 0 as 
o -+ 0, for all t and r, the regular part of the system (2.7) vanishes. Therefore, the 
static problem is described by the characteristic part of (2.7) 

(3.1) 

Let us introduce the analytic functions 

R R 

ml(L)=& s #dt, 02(G) =& i ++t 

-R -R 
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By using the Sokhotskii-Plemelj formulas we reduce (3.1) to the two-dimensional prob- 
lem of a conjugate with piecewise-constant coefficients 

CD+ = G@- + g, 1 t I& R; @+ = W, 1 
Here 

The eigenvalues G are distinct, hence there exists a matrix 

diagonal, Let us assume 

@=Hw, H=(1_;-;I, w=u;j 

P 
1 - a2 

icipb 
1 - cl2 

tl>R 

H such that H”GH is 

R 

Then the two-dimensional conjugate problem for cf, reduces to two one-dimensional 

problems for 1~, 

WI wz+ = (3.2) 

Since b (r) is a polynomial, the solution of (3.2) can then be constructed explicitly. 

As an illustration, let us consider a stamp with the flat base (f (r) = b,,). Using the 
methods developed in [lo], we obtain 

Wl = & 11 - X,(5)1, w2 = - * [I - X,(cJ] 

I+2 
a =&In- 

l-a 

Evaluating the jumps, we find 01, oa, cpl, (pa by the Sokhotskii-Plemelj formulas 

o1 = Ax, (t) = A&, a2 = iAz, (t) = iAe+* 

‘PI = 2A cos a *, cp,=2Asina, 

A= PO 
?cJM-_’ 

(3.3) 

which agrees with the results in [3, 61. 

4. Let us assume that h (5) z M (5). Using the exact solution (3.3). let us regul- 
arize the system (2.7). 

To simplify the computations, let us reduce (2.7) to the system 

R 

01(r) + ; 
s 

R o’(t) (jt - p,“f’ 1 & s (4.1) 
t-r 

H,, (t, 7-) (J)l (Q dt f 
-R -R 

R 
i 

- i Ht,(t,r)o,(t)dt 2n 
-R 
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R 
1 * 

-\ 2n Hz, (G r.) 02 (t) dt 
-R 

by means of the substitution cp = Ho . The kernels Hij are connected with the Kii 

by the relationships Hi, = K,i + K,, + ia (K,, - K1,) 

HI, = K,, - K,, - ia (K1, i- Kd 

H,, = K,, - K,, - ia (K1, + KU) 

H,, = Kll + K,, - ia (Kzl - KB) 

(4.2) 

Regularizing (4.1) in conformity with Vekua [l] , we obtain 

@i(r) = AXi(r) + -& 5 h,,(t, r)Wi(t)dt + & j hia(t, r) o,(t)& (4.3) 
-R -R 

R 

02(r) = iArc, + & f hzl(t, T-) co1 (t)dt + -&- 5 h2 (4 r) %2(t) dt 
-R -R 

(hij = Wij’ - wij-) 

The functions Wij are introduced by means of the relationships 

R 
Hln (tp r) dz 

(1 + a) xl+(z) z- 5 
-R 

(4.4) 

R 
x2 (5) 

s 

H,n 6 z) & 
%n = zni (1 - CL) xa+ (Z) IT - 5 

-R 

(n = 1, 2) 

The system (4.3) is a quasi-regular system of Fredholm equations of the second kind. 

Let us construct the solution of (4.3) under the assumption that the parameter 8 = 
kR is small. It can be shown that the kernels K12, Kzl, K,, are of higher order com- 
pared to 0. To estimate K1l , let us use the following reasoning. If 

Re (s2 - k:, 2)‘/z > 0, Re (s2 - Et, 2)“2 > 0, 

then 

ReK,, = tRe~~2-gg,,(k,,k2,s)-gg,,(li,,k,,s)l (ei’t-rJsfe’l’iT’S)dS 
0 

In the first quadrant the integrand has a first order pole and the branch point &, z2. 
It takes on real values on the imaginary axis. Taking the contour of integration indi- 
cated in Fig. 1 and using the estimate 1 1 - g,, 1 < c (co) sm2, we obtain that the 
real part of the kernel Kll equals the real part of the sum of the residue multiplied by 
2ni and the integrals over the edges of the slit. Retaining first order terms in this sum, 
we obtain 
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Re K,, = -& ph (a) Re (- i$, h(a) = n res, (g) + 
I 

?% * --_. 
E va - WE 

1 

I Es (Ea - 4 VI - Cad4 
o E2 V-F - CA) (I - 5”) + (EZ - l/2)2 + SS'(E~--,(I - <A) + (4% - ‘/z 1 l/_ 

a 

We obtain analogously 

A Im Kll = -j& ph(a) Im (iG) 

so that 

Kit = &- ph(a) ia 

Substituting the estimate found into (4.2) 
and (4.4), we obtain 

hi, := ---_hiZ = @Y!- q(r) (4.5) 
2R Jfi-aa 

h,i = h,, = 3h P)ie ,& (r.) 
2R fi-aa” 

* 
Let us apply successive approximations to 
(4.3). Let us take the static solution (3.3) 
as the first approximation 

Fig. 1 
w1 (r) = AZ, (r), oa (r) = iAx, (r) 

By using the estimate (4.5) we obtain the first approximation solution of the system 

(4.3) as 
o1 (r) = &xl (4, a2 (4 = iA+, (4 (A, = 1 + a@ (cc) ie) 

In a first approximation the solution of (2.7) has the form 

vi(r)= 2A,cos cpz(r) = 2A, sin 

5. We find the reaction of the half-space (in the static case 8 = 0) by the methods 
of integrating multivalued functions 

R R 

P=2JcSaz(r,0)rdr=2aqh, 5 q,(t)&= 
0 -R 

4(b + pL*) [I + vh(a) iel ln ( k*:F’* ) boR 

Let us investigate the behavior of the stresses at the edge of the stamp. Let us note 
that because of the properties of cpl (t) and ‘pa (t) the relationships (2.2) can be repre- 
sented as 
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We set t = R t,h IIs E, r = R th iI2 X, SO that 

are valid, hence (p (x) is a continuous function and 1 cp (x) I< I starting with some 5. 

Therefore, the equation cos (uz) + q (x) = 0 has an infinite number of zeros and 
the stress oz oscillates at the edge of the stamp. The oscillation of r,, is proved ana- 

logously. The same phenomenon evidently holds also in dynamics, at least for low vib- 
ration frequencies. 

It should be noted that the method developed above is applicable for arbitrary A and 

M. However, the structure of h (a) is considerably more complex in the general case. 
In the particular case of an elastic medium a and 0 take on only real positive values. 

In conclusion, the author is grateful to L. A. Galin for attention to the research. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

REFERENCES 

Vekua. N. P., Systems of Singular Integral Equations. “Nat&a”, Moscow, 1970. 

Abramov, V. M., Contact problem of an elastic half-plane and an absolutely 
rigid foundation taking friction into account. Dokl. Akad. Nauk SSSR, Vol. 17, 

W4, 1937. 
Mossakovskii, V.I., The fundamental mixed problem of the theory of elas- 

ticity for a half-space with a circular line of separation of the boundary condi- 
tions. PMM Vol. 18, N?2. 1954. 

Ufliand, la. S., The contact problem of the theory of elasticity for a punch of 
circular planform taking into account adhesion. PMM Vol. 20, W5. 1956. 

Abramian, B. L., Arutiunian, N. Kh. and Babloian, A. A., On sym- 
metric pressure of a circular stamp on an elastic half-space in the presence of 

adhesion, PMM Vol. 30, Nil, 1966. 
Keer, L. M., Mixed boundary-value problems for an elastic half-space. Proc. 

Cambridge Philos. Sot. , Vol. 63, NQ4, 1967. 
Ufliand, la. S., Integral Transforms in Problems of Elasticity Theory. “Nat&a”, 

Leningrad, 1967. 
Bateman, H. and Erdelyi, A., Tables of Integral Transforms, Vol. 2 (Rus- 

sian translation). “Nat&a”. Moscow, 1970. 

Bateman, H. and Erdelyi, A., Higher Transcendental Functions. Bessel 
Functions, Parabolic Cylinder Functions, Orthogonal Polynomials. (Russian Trans- 
lation), “Nat&a”, Moscow, 1966 (see also McGraw Hill, 1954). 



Axisymmetric dynamic contact problem for a viscoelastlc half-space 697 

10. Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of 

Elasticity. Groningen, Noordhoff, 1953, 
Translated by M.D. F. 

UDC 531 : 001.8 

ON THE PROBLEM OF THE RELATIONSHIP BRTWBBN 

THE SCHWARZSCHIID AND TOLMAN METRlCS 

PMM Vol. 37, N”4, 1973, pp. 739-145 
K. P. STANIUKOVICH and 0. Sh. SHARSHEKEEV 

(Moscow, Frunze) 
(Received September 5, 1972) 

The problem of the relationship between the Schwarzschild and Tolman metrics 

has occupied the attention of many workers. Although the solutions given in 

lJ - 31 satisfy the equations of the general relativity theqry (OTO) (‘) , they 
contradict the correspondence principle. This means that for G -+ 0 , the inter- 
val is not transformed into the interval of the special relativity theory (CTO) 

(* ) , while for .C -+ 00 , the solutions do not become Newtonian. This is apparent- 
ly caused by the unfortunate choice of the coordinates in the Tolman frame of 

reference. Papers [4, 51 illustrate particular cases of a correct passage from one 
metric to the other. 

In the present paper a general method of obtaining solutions is proposed in 
which the passage from one frame of reference to the other satisfies the corre- 

spondence principle. 

The intervals in the co-moving frame of reference and in the central frame of refer- 

ence are, respectively, 
- ds2 = - c2d+ + eWdR2 + r2dQz 

- dG = - evc2dt2 + ehdr2 + rzdQ2 

(dCP = diY + sin%d@) 

(1) 

(2) 

Since r = r (CT, R) and ct = ct (CT, R), we have 

dr = r’cdt + r’dR, cdt = ct’cdt + ct’dR 

(r’ = &/&, r’ = ar / aR, ct’ = cat I cat, ct’ = cat I aR) 

Substituting these differentials into (2). equating the coefficients accompanying c2dt2 

and dR2 and remembering that the coefficient of 2cdtdR is zero, we obtain 

” 2 '2 e c t -raeh=l, e?.r'2 - &'=t? = ,o ehr'r'_ct'c.tre" _- 0 

from which, eliminating eb and e”, we have 

e” = e” / (rf2 _ r’2e0), ey = rg2 / [C2ta2 (~‘2 _ r’ze”)] 

(e”ct’r’ - ct’r’) (ct’r’ - ct’r’) = 0 

(3) 

(4) 

*) Editors note. The abbreviations (OTO) and (CTO) are used in the relevant Soviet 
literature and stand for “general relativity theory” and “special relativity theory”, respec- 
tively. 


